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Introduction
Implantation in Semiconductor Technology Doping Requirements

 Main ion implantation areas

 Well doping

 Gate doping

 Source drain extension doping

 Source and drain doping

 Source drain extension doping requirements for the 45 nm node:

 Decrease the implantation energy

 Increase the dopant concentration
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Introduction
Traditional Ion Implantation

 Single ion specie at a defined energy

 At low energies (e < 1keV): Space charge in

traditional ion implanters limits the beam

transport

 Low implantation current 

 Degradation of the process throughput & 

uniformity

 Solution: Decelerate the beam just before the 

wafer (Ultra Low Energy implanters: ULE)

Limitation: Energy contamination by neutral 

atoms or molecules

Alternative: PLAD (PLAsma Doping)
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PLAD Principle

 Negative pulsed voltage is applied to a wafer

immersed in a plasma of dopant ions

 PLAD ignites the plasma with each pulse

 Multi-ion species at various energies

 A pulsed hollow cathode is used to ignite and

maintain plasma at very low energy e < 1 keV

Advantages:

 Simple & reliable

 High throughput at low energy

 Better energy control (E.C. free)

 Minimal plasma exposure

Dopant depth distribution simulation: Need incident ion 

energy and mass distribution
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Motivation for Plasma Diagnostic

 Goals:

 Measure ion energy distribution to predict the dopant depth profile in a 

plasma based implantation system (PLAD)

 Understand BF3 plasma and sheath collision processes to optimize plasma 

based ion implantation

 Requirements

 Ions bombarding the wafer and their proportion in the total ion flux 

sampled from the wafer side 

 Time resolved measurements of the Ion Energy Distribution (IED)

 Development of a dopant depth profile simulation protocol
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Experimental Setup
Mass spectrometer inside the high-voltage cathode: Concept

 Commercial ion mass and energy 
analyzer installed inside the cathode :

 Can measure ion energy distribution 
from 0 to 1000 eV

 Ions extracted through the cathode 
sheath

 IED measured in the center of the 
cathode

Provide: Ion energy and 

mass distribution
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Experimental Setup
Mass spectrometer inside the high-voltage cathode: Design

Pressure Range: 12 to 250 mTorr

Cathode Voltage: 50 to 1 kV

 Mass spectrometer installed inside the 
high-voltage cathode 

 Ion extracted through 75mm aperture 
in the center of the cathode

 Differential pumping minimize the 
collisions at the entrance of the mass 
spectrometer (~10-7 Torr) 

 Pressure range inside PLAD 
chamber: 12 to 250 mTorr

 Silicon wafer can be replaced using a 
special modified lift pin system
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Experimental Setup
Mass spectrometer inside the high-voltage cathode: 3D simulation

 Simulation of the ion beam inside the Mass spectrometer

Extractor Drift Tube

Lens 1       45° Electrostatic 

sector

Quadrupole Lens
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Experimental Setup
Mass spectrometer inside the high-voltage cathode: 3D simulation

 Simulation of the ion beam inside the Mass spectrometer

 modification of optic voltage set-up

Transmission in energy constant (10 to 1000 eV)   
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Experimental Setup
Time Resolved Measurements Protocol

 Rise Time: 5ms

 Fall Time: 12ms

Cathode Voltage waveform
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 Mass Spectrometer data acquisition 

 Synchronized with the PLAD pulse

 When voltage is stabilized
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BF2
+ Ion Energy Distribution BF3 500V

Ion Reaching the Cathode During Pulse-On period

 IED shape strongly varies with experimental conditions

 Higher fraction of energetic ions in the hollow cathode mode (lower pressure, higher density)

 Many collisions occur inside the sheath in the no hollow cathode mode (higher pressure, lower 
density)
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BF2
+ Ion Energy Distribution BF3 500V

Ion Reaching the Cathode During Pulse-On period

 IED shape strongly varies with experimental conditions

 Higher fraction of energetic ions in the hollow cathode mode (lower pressure, higher density)

 Many collisions occur inside the sheath in the no hollow cathode mode (higher pressure, lower 
density)

0 100 200 300 400 500

0.1

1

10

100

N
o

rm
a

li
z
e

d
 I

E
D

 (
a

rb
.u

.)

Energy (eV)

BF
2

+

500V 100mT

Without Hollow cathodeWith Hollow cathode

Ion energy distribution at the cathode can be measured  

s/l = 0.77 s/l =  7.84
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Ion Energy Distribution BF3 500V
Ions Reaching the Cathode During Pulse-On Period

 Main ions detected: 

 B+

 BF+

 BF2
+

 BF3
+

 BF2
+ dominant ion

 Implantation of multi-ion species at various energies

 Need to modify the depth profile simulation protocol used with

traditional ion implantation

0 100 200 300 400 500

0.1

1

10

100

BF
3

+

B
+

BF
+

N
o

rm
a

li
z
e

d
 I

E
D

 (
a

rb
.u

.)

Energy (eV)

BF
2

+

500V 100mT



L. Godet

July 7 2006

Development of pulsed plasma doping system for semiconductor processing: characterization of the plasma and its 

interaction with the materials 
17

Simulation of Dopant Depth Profile: 

Protocol
 Goal: prediction of the dopant depth profile using SRIM* and 

experimental ion energy distributions

 The SRIM code accepts only atomic ions: 

BFx
+ ion energy distributions are converted into 

equivalent boron, B+
eq ion energy distribution

* J. F. Ziegler, J. P. Biersack and U. Littmark, Pergamon Press, New York, 1985 

)(

)(
)()(




 

xx

xeq
BFm

Bm
BFEBE

 Boron Equivalent IED is divided in 10eV increments and input into the 
SRIM software

 The simulation output is normalized to the SIMS measured dose
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Simulation of Dopant Depth Profile: Predicted dopant 

profiles and comparison with measured SIMS profiles
500V 100mTorr BF3 plasma

 Channeling inside the silicon  low implantation angle

 Good correlation between SIMS and predicted profiles

The simulation can be used for dopant profile prediction 
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PLAD Dopant Depth Profile Analysis

 Simulation allows for dopant depth profile analysis

 B+ defines the depth part of the dopant 
profile

 BF2
+ defines the surface concentration and 

dose

 BF3
+ plays a minor role in the dopant profile

 To obtain shallower junction with PLAD

Need to understand how B+ is created 

 Bulk plasma characterization

 Cathode sheath characterization

Control the B+ ion  flux and energy
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Plasma Characterization
Ion fractions

Ion across the sheath

 Heavy ion fraction strongly 
reduced

 Lighter ion fraction significantly 
increased inside the sheath

 B+ and BF+ most probably 
created inside the sheath

Bulk plasma

 BF2
+ is the dominant ion 

 Small fraction of B+ and BF+ 

(<2% of the total ion flux under 
all different conditions)

 Heavy ion detected (B2F3
+, 

B2F5
+)

Ion fraction from the bulk plasma 
different than the one measured at 

the cathode 
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B+ ion fraction as a function of the number of 

collisions inside the sheath 

 B+ ion fraction strongly increases when the number of collision inside the sheath increases

 B+ fraction at the cathode similar to its fraction from the bulk in case of collision-less sheath

 Confirm that B+ is created inside the sheath

 Two different hypothesis:
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Heavy ion dissociation into B+ inside the sheath 
Validation of the hypothesis

 Child Langmuir Law allows for the conversion of DV1 into a distance d traveled inside 

the sheath

 If the heavy ions dissociate inside the sheath to produce B+, the distance d is equal to 

the heavy ion dissociation mean free path and is inversely proportional to the pressure

B+ is  created by dissociation of heavy molecular ions 
inside the sheath
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Shallower Dopant Profile:
Two Different Approaches:

 Highly collisional sheath

 High B+ fraction but low mean energy

 Collision-less sheath

 Low B+ fraction but high mean energy
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Collisional Sheath
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Collision-less sheath

Hollow cathode plasma
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Control of the Plasma Density
Hollow Cathode Function

 Self sustained discharge for  low  energy 
implantation (Vb<600V)

 Secondary Electron production

• Mirror electric field for electrons

• Confinement

 Higher plasma density

 Lower discharge pressure

 New operating parameter: anode to cathode spacing

 Electric field strength and E/N variations due to a 
change of the effective anode to cathode gap
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Sheath Thickness with different Anode-to-Cathode Spacing

500V 30mT 50ms BF3 discharge – Hollow cathode: 1400 V

 Effective hollow cathode surface 

is increased by increasing the 

anode to cathode spacing

 Plasma density increases

 Sheath thickness decreases
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Sheath Thickness with different Anode-to-Cathode Spacing

500V 30mT 50ms BF3 discharge – Hollow cathode: 1400 V

 Effective hollow cathode surface 

is increased by increasing the 

anode to cathode spacing

 Plasma density increases

 Sheath thickness decreases

 Pressure is constant, mean free 

path stays the same

Less collisions occur inside the 

sheath 

Increasing anode to cathode gap  affects the IED of the ions 
reaching the wafer
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Anode Spacing Effect on the Ion Energy Distribution
500V, 30mT, 2500Hz, 5sccm, Dose 1e15, Hollow cathode: 1400V
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By increasing anode to cathode spacing, the collisions in the sheath  
decrease and production of light ions decreases

Anode Spacing Effect on the Boron Molecular Ion 

Fractionation and Fraction of B+ Energetic

500V, 30mT, 2500Hz, 5sccm, Dose 1e15, Hollow cathode: 1400V
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Predicted dopant profile based on IED
500V 30 mTorr BF3 discharge at different anode-to-cathode spacing

 Shallower junction for 

larger gap

 Lower B+ ion flux

 Higher fraction of B+

energetic 

 Optimum dopant 
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 Need to further minimize the number of collisions inside the sheath
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Collision-less sheath

Pulsed Anode Plasma
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Pulse Anode Mode

Pulsed 

Cathode

Pulsed 

Anode

 Pulsed anode mode (Va>400V)

 Electron confinement between 
the two pulsed electrodes

 Higher plasma density

 Lower discharge pressure

 Anode voltage: New operating 
parameter
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Pulsed Anode Voltage Effect on the Boron Ion 

Flux Content
500V, 30mT, 50ms, 2500Hz, 5.5cm

By Increasing the plasma density, number of collisions in the sheath  
decrease and production of light ions decreases
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Ion Energy Distribution for different Pulsed Anode 
Voltage

500V 30mT 50ms BF3 discharge

0 100 200 300 400 500
0

2

4

6

 

N
o

rm
a

li
z
e

d
 I

o
n

 E
n

e
rg

y
 D

is
tr

ib
u

ti
o

n
 (

a
rb

.u
.)

B+

0 100 200 300 400 500
0

2

4

6

 

 

BF+

0 100 200 300 400 500
0

20

40

60

80

 

 

BF
2

+

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 

  

 400V

 600VBF
3

+

Energy (eV)

0 100 200 300 400 500
0

2

4

6

 

N
o

rm
a

li
z
e

d
 I

o
n

 E
n

e
rg

y
 D

is
tr

ib
u

ti
o

n
 (

a
rb

.u
.)

B+

0 100 200 300 400 500
0

2

4

6

 

 

BF+

0 100 200 300 400 500
0

20

40

60

80

 

 

BF
2

+

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 

  

 400V

 600VBF
3

+

Energy (eV)

0 100 200 300 400 500
0

2

4

6

 

N
o

rm
a

li
z
e

d
 I

o
n

 E
n

e
rg

y
 D

is
tr

ib
u

ti
o

n
 (

a
rb

.u
.)

B+

0 100 200 300 400 500
0

2

4

6

 

 

BF+

0 100 200 300 400 500
0

20

40

60

80

 

 

BF
2

+

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 

  

 400V

 600V

 800V

BF
3

+

Energy (eV)

0 100 200 300 400 500
0

2

4

6

 

N
o

rm
a

li
z
e

d
 I

o
n

 E
n

e
rg

y
 D

is
tr

ib
u

ti
o

n
 (

a
rb

.u
.)

B+

0 100 200 300 400 500
0

2

4

6

 

 

BF+

0 100 200 300 400 500
0

20

40

60

80

 

 

BF
2

+

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

 

  

 400V

 600V

 800V

 1200V

BF
3

+

Energy (eV)

 No more B+ creation in the 
sheath for high anode 
voltage

Minimization of the B+

fraction

 B+ energetic fraction does 
not increase
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Pulsed Anode versus Hollow Cathode Baseline 
500V, 30 mTorr, 50 ms, 2500 Hz

 Shallower Junction depth with higher anode voltage
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Control of dopant depth profile
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Summary and Conclusion

 Bulk plasma mass spectrometry measurement not sufficient to 
predict dopant depth profile into silicon

 Measurement of the ions reaching the cathode during pulse-on 
period provide the necessary information to predict the dopant 
depth profile

 A fraction of B+ and BF+ measured at the cathode are created by 
dissociation of heavier ions inside the sheath 

Characterization of bulk plasma and cathode sheath are needed to

optimized the dopant depth profile and obtain shallower junction
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Perspective

 Scientific

 Heavy ions characterization

 Negative ions (role in the discharge)

 Industrial

 Study new chemistry (B2H6, AsH3, PH3…)

 Profile engineering

 Global model for process simulation


